Assignment of the electronic spectra of [Mo(CN)(8)](4)(-) and [W(CN)(8)](4)(-) by Ab initio calculations

Inorg Chem. 2004 May 17;43(10):3142-50. doi: 10.1021/ic035282t.

Abstract

CASPT2 calculations are performed on the dodecahedral and square antiprismatic isomers of the [Mo(CN)(8)](4)(-) and [W(CN)(8)](4)(-) complexes. The high-energy experimental bands above 40000 cm(-)(1) are assigned to MLCT transitions. The experimental observed trend of the extinction coefficients for the molybdenum and tungsten complex is reproduced by our CASSCF oscillator strengths. All bands below 40000 cm(-)(1) can be ascribed to ligand-field transitions, although small contributions from forbidden MLCT transitions cannot be excluded. In order to account for all experimental bands in the electronic spectrum of these octacyanocomplexes, a dynamic equilibrium in solution between the two isomeric forms must be hypothesized. Spin-orbit coupling effects are found to be more important for the square antiprismatic isomers; in particular, large singlet-triplet mixings are calculated for this isomer of [W(CN)(8)](4)(-). Ligand-field and Racah parameters as well as spin-orbit coupling constants are determined on the basis of the calculated transition energies. The obtained values for these parameters support the recently proposed model for exchange interactions in magnetic clusters and networks containing pentavalent octocyanometalates of molybdenum and tungsten.