Hybrid numerical method for solution of the radiative transfer equation in one, two, or three dimensions

Appl Opt. 2004 May 1;43(13):2734-43. doi: 10.1364/ao.43.002734.

Abstract

A hybrid method is presented by which Monte Carlo (MC) techniques are combined with an iterative relaxation algorithm to solve the radiative transfer equation in arbitrary one-, two-, or three-dimensional optical environments. The optical environments are first divided into contiguous subregions, or elements. MC techniques are employed to determine the optical response function of each type of element. The elements are combined, and relaxation techniques are used to determine simultaneously the radiance field on the boundary and throughout the interior of the modeled environment. One-dimensional results compare well with a standard radiative transfer model. The light field beneath and adjacent to a long barge is modeled in two dimensions and displayed. Ramifications for underwater video imaging are discussed. The hybrid model is currently capable of providing estimates of the underwater light field needed to expedite inspection of ship hulls and port facilities.