Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies

J Am Chem Soc. 2004 May 12;126(18):5851-8. doi: 10.1021/ja0394582.

Abstract

Electrochemical and photoelectrochemical studies were conducted on self-assembled multilayer films of titania nanosheets on a conductive ITO substrate. Cyclic voltammogram (CV) curves indicated that the titania nanosheet electrode underwent insertion/extraction of Li(+) ions into/from the nanosheet galleries, associated with reduction/oxidation of Ti(4+)/Ti(3+). These processes accompanied reversible changes in UV-vis absorption of the titania nanosheet electrodes. Applying a negative bias of -1.3 V (vs Ag/Ag(+)) and lower brought about absorption reduction where the wavelength is shorter than 323 nm, and vice versa, indicating a flat-band potential of (approximately) -1.3 V and a band gap energy of 3.84 eV. Photocurrents were generated from the titania nanosheet electrodes under a positive bias. The onset potential for photocurrent generation from the titania nanosheet electrodes was around -1.27 V, and the band gap energy estimated from the photocurrent action spectra was 3.82 eV, in excellent agreement with the values obtained from the spectroelectrochemical data. The lack of difference in the band gap energies for titania nanosheet electrodes with different numbers of layers suggests that a nanosheet is electronically isolated in multilayer assemblies without affecting the electronic state of neighboring nanosheets. Similar measurements on the anatase-type TiO(2) electrode revealed that the lower edge of the conduction band for the titania nanosheet is approximately 0.1 V higher than that for anatase, while the upper edge of the valence band is 0.5 V lower.