Differential-aperture X-ray structural microscopy: a submicron-resolution three-dimensional probe of local microstructure and strain

Micron. 2004;35(6):431-9. doi: 10.1016/j.micron.2004.02.004.

Abstract

A recently developed differential-aperture X-ray microscopy (DAXM) technique provides local structure and crystallographic orientation with submicron spatial resolution in three-dimensions; it further provides angular precision of approximately 0.01 degrees and local elastic strain with an accuracy of approximately 1.0 x 10(-4) using microbeams from high brilliance third generation synchrotron X-ray sources. DAXM is a powerful tool for inter- and intra-granular studies of lattice distortions and lattice rotations on mesoscopic length scales of tenths of microns to hundreds of microns that are largely above the range of traditional electron microscopy probes. Nondestructive, point-to-point, spatially resolved measurements of local lattice orientations in bulk materials provide direct information on geometrically necessary dislocation density distributions through measurements of the lattice curvature in plastically deformed materials. This paper reviews the DAXM measurement technique and discusses recent demonstrations of DAXM capabilities for measurements of microtexture, local elastic strain, and plastic deformation microstructure.