Mistletoe viscotoxins induce membrane permeabilization and spore death in phytopathogenic fungi

Physiol Plant. 2004 May;121(1):2-7. doi: 10.1111/j.0031-9317.2004.00259.x.

Abstract

Viscotoxins (Vts) are basic peptides expressed in mistletoe leaves, seeds and stems which have been shown to be cytotoxic to mammalian cells. The aim of this study was to analyse whether Vts were able to control and/or inhibit the growth of phytopathogenic fungi to obtain a clue to their biological function. Incubation of two Vt isoforms, VtA(3) and VtB, at a final concentration of 10 micro M resulted in a complete blockage of the germination of spores from three different pathogenic fungi. It was also shown that lower concentrations than 10 micro M of VtA(3) and VtB inhibit their mycelial growth in a dose-dependent manner. The protein dose required to inhibit the growth of Fusarium solani and Sclerotinia sclerotiorum to a 50% was between 1.5 and 3.75 micro M, which represents a potent activity. No significant differences in the antifungal potency for each Vt isoform, either VtA(3) and VtB, were observed, although they have been shown to exert differential cytotoxicity on mammalian cells. It was also demonstrated that Vts act as fungicidal compounds. To explore the basis of the antifungal activity the ability of VtA(3) to induce changes in membrane permeability and on the oxidative status of F. solani spores was analysed. By using a specific fluorescent probe on intact spores, it was demonstrated that VtA(3) produces rapid changes in fungal membrane permeability. It also induces H(2)O(2) production verified by a histochemical staining. The data presented in this study support a direct role of Vts in the plant defence determined by their lethal effect on fungal pathogens.