Extracellular ATP-induced calcium signaling in mIMCD-3 cells requires both P2X and P2Y purinoceptors

Am J Physiol Renal Physiol. 2004 Aug;287(2):F204-14. doi: 10.1152/ajprenal.00281.2003. Epub 2004 Apr 6.

Abstract

Kidney tubules are targets for the activation of locally released nucleotides through multiple P2 receptor types. Activation of these P2 receptors modulates cellular Ca(2+) signaling and downstream cellular function. The purpose of this study was to determine whether P2 receptors were present in mIMCD-3 cells, a mouse inner medullary collecting duct cell line, and if so, to examine their link with intracellular Ca(2+) homeostasis. To monitor intracellular Ca(2+) concentration ([Ca(2+)](i)), experiments were conducted using the fluorescent dye fura 2. ATP (0.1-100 microM) produced a dose-dependent increase in [Ca(2+)](i) in a physiological Ca(2+)-containing solution, with an EC(50) of 2.5 microM. The P2-receptor antagonist PPADS reduced the effect of ATP on [Ca(2+)](i), and the P1-receptor agonist adenosine caused only a small increase in [Ca(2+)](i). Preincubation of cells with the phospholipase C antagonist U-73122 blocked the ATP-induced increase in [Ca(2+)](i), indicating P2Y receptors were involved in this process. In a Ca(2+)-free bath solution, thapsigargin and ATP induced intracellular Ca(2+) release from an identical pool. Nucleotides caused an increase in [Ca(2+)](i) in the potency order of UTP = ATP > ATP gamma S > ADP > UDP that is best fitted with the P2Y(2) subtype profile. Although the P2Y agonist UTP induced a similar large transient increase in [Ca(2+)](i) as did ATP, a small but sustained increase in [Ca(2+)](i) occurred only in ATP-stimulated cells, suggesting the role of P2X receptors in Ca(2+) influx. The sustained increase in [Ca(2+)](i) could be blocked by either nonselective cation channel blockers Gd(3+) or P2X antagonists PPADS and PPNDS. Furthermore, when either Gd(3+) or PPNDS was applied to the bath solution before ATP application, the ATP-induced increase in [Ca(2+)](i) was significantly reduced. Both RT-PCR and Western blotting corroborated the presence of P2X(1) and P2Y(2) receptors. These studies demonstrate that mIMCD-3 cells have both P2X and P2Y subtype receptors and that the activation of both P2X and P2Y receptors by extracellular ATP appears to be required to regulate intracellular Ca(2+) signaling.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism*
  • Adenosine Triphosphate / pharmacology
  • Animals
  • Base Sequence
  • Calcium / metabolism
  • Calcium Signaling*
  • Cell Membrane / metabolism
  • Cells, Cultured
  • Extracellular Space / metabolism*
  • Intracellular Membranes / metabolism
  • Kidney Medulla
  • Kidney Tubules, Collecting / cytology
  • Kidney Tubules, Collecting / metabolism*
  • Mice
  • Molecular Sequence Data
  • Osmolar Concentration
  • RNA, Messenger / metabolism
  • Receptors, Purinergic P2 / genetics
  • Receptors, Purinergic P2 / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • RNA, Messenger
  • Receptors, Purinergic P2
  • Adenosine Triphosphate
  • Calcium