Microwave-treated gelatin microspheres as drug delivery system

J Control Release. 2004 Apr 16;96(1):67-84. doi: 10.1016/j.jconrel.2004.01.009.

Abstract

The crosslinking process of natural macromolecules with microwave energy should have the potentiality to overcome the problems due to the toxicity of the residuals of chemical crosslinking agents and moreover of the "in vivo" biodegradation products of the chemical crosslinked macromolecule. To evaluate the effective crosslinking of the gelatin forming the microspheres, the water-soluble fraction at 37 degrees C, the water absorption capability, the free amino and free carboxylic acid groups of the gelatin were determined. The structural change in the gelatin microspheres has been detected by the porosity studies. Moreover, both the "in vitro" biodegradability and the biocompatibility of the gelatin microspheres microwave-treated after a subcutaneous injection into female albino guinea pigs were tested. As the results suggest only the gelatin microspheres microwave-treated for 10 min at an inlet temperature of 250 degrees C could have been modified by the crosslink formation among the macromolecular chains. The gelatin microspheres treated with the microwave energy were very well biodegraded as indicated both by the "in vitro" enzymatic degradation studies and mainly by the histopathological examination. This latter study has also demonstrated the biocompatibility of the gelatin microspheres crosslinked with the microwave energy. In order to evaluate the feasibility of the microwave crosslinking process for pharmaceutical applications, both the drug loading and the drug release processes were evaluated using diclofenac as drug model, either as acidic form or as sodium salt. The microspheres were swollen in aqueous solution of diclofenac sodium salt, followed by a washing procedure with cool water to maintain the sodium salt into the microspheres or with pH 1.5 HCl to induce the diclofenac precipitation. To increase the amount of diclofenac acid form in the microspheres, the procedure was repeated three times washing with pH 1.5 HCl after each swelling process. Both the X-ray diffractometry and thermal analysis investigations showed a different physical state of the two drug forms in the microspheres, i.e. the amorphous state of the sodium salt and the crystalline state of the acidic form. According to the experimental results, the drug is released from gelatin microspheres according to the drug loading and the drug solubility.

MeSH terms

  • Animals
  • Cattle
  • Drug Delivery Systems / methods*
  • Female
  • Gelatin / administration & dosage*
  • Gelatin / pharmacokinetics
  • Gelatin / radiation effects*
  • Guinea Pigs
  • Microspheres*
  • Microwaves*

Substances

  • Gelatin