Effect of inorganic anions on the morphology and structure of magnesium calcite

Chemistry. 2004 Apr 2;10(7):1647-56. doi: 10.1002/chem.200305313.

Abstract

Calcium carbonate was precipitated from calcium hydroxide and carbonic acid solutions at 25 degrees C, with and without addition of different magnesium (MgSO(4), Mg(NO(3))(2) and MgCl(2)) and sodium salts (Na(2)SO(4), NaNO(3) and NaCl) of identical anions, in order to study the mode of incorporation of magnesium and inorganic anions and their effect on the morphology of calcite crystals over a range of initial reactant concentrations and limited c(i)(Mg(2+))/c(i)(Ca(2+)) molar ratios. The morphology, crystal size distribution, composition, structure, and specific surface area of the precipitated crystals, as well as the mode of cation and anion incorporation into the calcite crystal lattice, were studied by a combination of optical and scanning electron microscopy (SEM), electronic counting, a multiple BET method, thermogravimetry, FT-IR spectroscopy, X-ray diffraction (XRD), and electron paramagnetic resonance (EPR) spectroscopy. In the systems of high initial relative supersaturation, precipitation of an amorphous precursor phase preceded the formation of calcite, whereas in those of lower supersaturation calcite was the first and only polymorphic modification of calcium carbonate that appeared in the system. The magnesium content in calcite increased with the magnesium concentration in solution and was correlated with the type of magnesium salt used. Mg incorporation caused the formation of crystals elongated along the calcite c axis and, in some cases, the appearance of new [011] faces. Polycrystalline aggregates were formed when the c(i)(Mg(2+))/c(i)(Ca(2+)) molar ratios in solution were increased. Addition of sulfate ions, alone, caused formation of spherical calcite polycrystalline aggregates.