Ultrasonic characterization of Cu-Al-Ni single crystals lattice stability in the vicinity of the phase transition

Ultrasonics. 2004 Apr;42(1-9):519-26. doi: 10.1016/j.ultras.2004.01.029.

Abstract

Measurements of elastic constants of the austenite phase when approaching the phase transformation either upon cooling or stressing is of the crucial interest for the shape memory alloy field. Acoustic properties (wave velocity and also attenuation changes) of the Cu-Al-Ni single crystal were investigated in situ during stress-induced martensitic transformation at constant (room) temperature. The parent austenite cubic lattice of the Cu-Al-Ni exhibits very high elastic anisotropy (anisotropy factor A approximately 12). The measurements were made using nine combinations of (i) applied uniaxial compression in a given crystal direction, (ii) the wave propagation and (iii) polarization vectors. The chosen configurations are sufficient for evaluation of all independent third order elastic constants (TOEC). The longitudinal modes were also measured by the immersion technique, using the transducer pair in a water tank installed on the testing machine. The device works as "a ultrasonic extensometer" measuring a transverse strain of the specimen. The dependencies of both natural and initial wave velocities on the applied stress may be evaluated. Three elastic constants of the stress-induced martensite were determined. The elastic properties were found to vary with the increasing stress above the Ms transformation temperature, which is interpreted as a precursor for the martensitic transformation. The onset of the transformation was additionally identified from the acoustic emission measurement.