High-performance semiconducting polythiophenes for organic thin-film transistors

J Am Chem Soc. 2004 Mar 24;126(11):3378-9. doi: 10.1021/ja039772w.

Abstract

Conjugated polymers have been widely studied as potential semiconductor materials for organic thin-film transistors (TFTs). However, they have provided functionally poor transistor properties when the TFTs are fabricated in air. We have developed a class of liquid crystalline regioregular polythiophenes, PQTs, that possess sufficient air stability to enable achievement of excellent TFT properties under ambient conditions. These polythiophenes exhibit unique self-assembly ability and form highly structured thin films when deposited from solution under appropriate conditions. TFTs fabricated in air with PQT channel layers have provided high field-effect mobility to 0.14 cm2 V-1 s-1 and high current modulation to over 107, together with other desirable transistor properties. These high-performance polythiophenes will therefore help bring the long-standing concept of low-cost organic/polymer transistor circuits closer to commercial reality.