Motor cortex inhibition induced by acoustic stimulation

Exp Brain Res. 2004 Sep;158(1):120-4. doi: 10.1007/s00221-004-1883-4. Epub 2004 Mar 13.

Abstract

The influence of the brainstem motor system on cerebral motor areas may play an important role in motor control in health and disease. A new approach to investigate this interaction in man is combining acoustic stimulation activating the startle system with transcranial magnetic stimulation (TMS) over the motor cortex. However, it is unclear whether the inhibition of TMS responses following acoustic stimulation occurs at the level of the motor cortex through reticulo-cortical projections or subcortically, perhaps through reticulo-spinal projections. We compared the influence of acoustic stimulation on motor effects elicited by TMS over motor cortical areas to those evoked with subcortical electrical stimulation (SES) through depth electrodes in five patients treated with deep brain stimulation for Parkinson's disease. SES bypasses the motor cortex, demonstrating any interaction with acoustic stimuli at the subcortical level. EMG was recorded from the contralateral biceps brachii muscle. Acoustic stimulation was delivered binaurally through headphones and used as a conditioning stimulus at an interstimulus interval of 50 ms. When TMS was used as the test stimulus, the area and amplitude of the conditioned motor response was significantly inhibited (area: 57.5+/-12.9%, amplitude: 47.9+/-7.4%, as percentage of unconditioned response) whereas facilitation occurred with SES (area: 110.1+/-4.3%, amplitude: 116.9+/-6.9%). We conclude that a startle-evoked activation of reticulo-cortical projections transiently inhibits the motor cortex.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Aged
  • Auditory Pathways / physiology*
  • Efferent Pathways / physiology*
  • Electric Stimulation
  • Electric Stimulation Therapy
  • Electrodes, Implanted
  • Electromyography
  • Female
  • Humans
  • Magnetics
  • Male
  • Middle Aged
  • Motor Cortex / physiology*
  • Muscle Contraction / physiology
  • Muscle, Skeletal / innervation
  • Muscle, Skeletal / physiology
  • Neural Inhibition / physiology*
  • Parkinson Disease / physiopathology
  • Parkinson Disease / therapy
  • Reaction Time / physiology
  • Reflex / physiology
  • Reflex, Startle / physiology*
  • Reticular Formation / physiology*