Methyl group dynamics in a confined glass

Eur Phys J E Soft Matter. 2003 Nov:12 Suppl 1:S43-6. doi: 10.1140/epjed/e2003-01-011-7. Epub 2003 Nov 5.

Abstract

We present a neutron scattering investigation on methyl group dynamics in glassy toluene confined in mesoporous silicates of different pore sizes. The experimental results have been analysed in terms of a barrier distribution model, such a distribution following from the structural disorder in the glassy state. Confinement results in a strong decreasing of the average rotational barrier in comparison to the bulk state. We have roughly separated the distribution for the confined state in a bulk-like and a surface-like contribution, corresponding to rotors at a distance from the pore wall respectively larger and smaller than the spatial range of the interactions which contribute to the rotational potential for the methyl groups. We have estimated a distance of 7 A as a lower limit of the interaction range, beyond the typical nearest-neighbour distance between centers-of-mass (4.7 A).