Intracellular diffusion of adenosine phosphates is locally restricted in cardiac muscle

Mol Cell Biochem. 2004 Jan-Feb;256-257(1-2):229-41. doi: 10.1023/b:mcbi.0000009871.04141.64.

Abstract

Recent studies have revealed the structural and functional interactions between mitochondria, myofibrils and sarcoplasmic reticulum in cardiac cells. Direct channeling of adenosine phosphates between organelles identified in the experiments indicates that diffusion of adenosine phosphates is limited in cardiac cells due to very specific intracellular structural organization. However, the mode of diffusion restrictions and nature of the intracellular structures in creating the diffusion barriers is still unclear, and, therefore, a subject of active research. The aim of this work is to analyze the possible role of two principally different modes of restriction distribution for adenosine phosphates (a) the uniform diffusion restriction and (b) the localized diffusion limitation in the vicinity of mitochondria, by fitting the experimental data with the mathematical model. The reaction-diffusion model of compartmentalized energy transfer was used to analyze the data obtained from the experiments with the skinned muscle fibers, which described the following processes: mitochondrial respiration rate dependency on exogenous ADP and ATP concentrations; inhibition of endogenous ADP-stimulated respiration by pyruvate kinase (PK) and phosphoenolpyruvate (PEP) system; kinetics of oxygen consumption stabilization after addition of 2 mM MgATP or MgADP; ATPase activity with inhibited mitochondrial respiration; and buildup of MgADP concentration in the medium after addition of MgATP. The analysis revealed that only the second mechanism considered--localization of diffusion restrictions--is able to account for the experimental data. In the case of uniform diffusion restrictions, the model solution was in agreement only with two measurements: the respiration rate as a function of ADP or ATP concentrations and inhibition of respiration by PK + PEP. It was concluded that intracellular diffusion restrictions for adenosine phosphates are not distributed uniformly, but rather are localized in certain compartments of the cardiac cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Diphosphate / metabolism*
  • Adenosine Triphosphatases / metabolism
  • Adenosine Triphosphate / metabolism*
  • Animals
  • Culture Media
  • Diffusion
  • Female
  • Kinetics
  • Male
  • Myocardium / metabolism*
  • Oxidative Phosphorylation
  • Oxygen Consumption
  • Rats
  • Rats, Wistar

Substances

  • Culture Media
  • Adenosine Diphosphate
  • Adenosine Triphosphate
  • Adenosine Triphosphatases