Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some Scots pine stands

Tree Physiol. 1994 Jul-Sep;14(7_9):981-995. doi: 10.1093/treephys/14.7-8-9.981.

Abstract

The LAI-2000 plant canopy analyzer (Li-Cor, Inc., Lincoln, NE) was tested at six experimental plots of Scots pine (Pinus sylvestris L.) in central Sweden at peak leaf area in August and after litterfall in October 1990. An independent estimate of leaf area index for August 1990 was obtained based on an empirically derived regression of needle area on stem sapwood area, and the decrease in leaf area between the two measurements was estimated from measurements of litterfall. A strong linear relationship was found between estimates by the LAI-2000 (L(Li-Cor)) and the indirect estimates of leaf area index (taken as half of total surface area) (L). The finding that L(Li-Cor) was considerably smaller than L was explained theoretically. It was shown that if shoots, instead of individual needles, are randomly distributed in the canopy, L(Li-Cor) corresponds to L multiplied by a factor (beta) characterizing the mutual shading of needles on the shoot. The shading factor, beta, was equal to the ratio of spherically projected shoot area to spherically projected needle area, where the spherically projected area is defined as the average projection (silhouette) area taken over all directions in space. The quantity betaL was defined as the shoot silhouette area index (SSAI), and an equation for the relationship between SSAI and the mean silhouette to total area ratio (mean STAR) of shoots was derived. Measured values of mean STAR for Scots pine indicated that L(Li-Cor) corresponds to SSAI rather than L. However, the decrease in leaf area index due to litterfall occurring between August and October was only partly detected by the LAI-2000, possibly because SSAI did not change to the same degree as L, i.e., there was an increase in the factor beta. This hypothesis is supported by data showing a large increase in mean STAR with shoot age.