Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis

Clin Biomech (Bristol, Avon). 2004 Feb;19(2):190-5. doi: 10.1016/j.clinbiomech.2003.11.003.

Abstract

Objectives: To analyse patient-specific bracing biomechanics in the treatment of scoliosis.

Design: Two complementary computer tools have been developed to quantify the brace action on scoliotic spine from pressure measurements, and to simulate its effect on patient-adapted finite element model.

Background: Brace pad forces and brace effect on spine deformities have been reported. However, the brace mechanisms still need to be better understood to obtain more effective treatments.

Methods: The 3D geometry of the spine and rib cage of three scoliotic adolescents treated by the Boston brace was obtained using a multiview radiographic reconstruction technique. A personalized biomechanical model was constructed for each patient. Pressures generated by the brace on the thorax were measured using pressure sensors. For each zone with a threshold pressure higher than 30 mmHg, a total equivalent force was calculated and applied to the corresponding model nodes.

Results: The pressure were generally scattered on the overall torso, with the highest pressures measured on five distinct regions: right thoracic, left lumbar, abdominal, right and left sides of the pelvis. The equivalent forces were of 18-73 N. Differences between simulated deformed shapes and real in-brace geometry of the patients were less than 6 and 9.8 mm for the vertebral positions in the coronal and sagittal planes, and 7.7 degrees for the Cobb angles.

Conclusion: The results supported the feasibility of such approach to analyse patient-specific bracing biomechanics, which may be useful in the design of more effective braces.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Biomechanical Phenomena
  • Braces*
  • Equipment Design
  • Female
  • Finite Element Analysis*
  • Humans
  • Image Processing, Computer-Assisted
  • Lumbar Vertebrae / physiology
  • Patient Care Planning
  • Range of Motion, Articular / physiology
  • Scoliosis / diagnosis
  • Scoliosis / rehabilitation*
  • Sensitivity and Specificity
  • Stress, Mechanical
  • Thoracic Vertebrae / physiology