Air sampling of aromatic hydrocarbons in the presence of ozone by solid-phase microextraction

J Chromatogr A. 2004 Jan 30;1025(1):57-62. doi: 10.1016/j.chroma.2003.10.078.

Abstract

Effects of ozone on air sampling of standard gas mixtures of aromatic hydrocarbons were tested using solid-phase microextraction (SPME). Standard concentrations of ozone ranging from 10 ppb (v/v) to 6400 ppm (v/v) were generated using an in-house built ozone generator based on corona discharge. Effects of temperature, discharge voltage, and oxygen flow on the ozone generation were tested. The working dc voltage had the greatest effect on generated ozone concentration and was proportional to the ozone concentration. Generation temperature and oxygen flow rate were inversely proportional to ozone concentrations. Produced ozone was mixed with standard benzene, toluene, ethylbenzene, and xylenes (BTEX) gas at less than 100 ppb (v/v). Air samples were collected with poly(dimethylsiloxane) (PDMS) 100 microm SPME fibers and analyzed by gas chromatography (GC)-flame ionization detection (FID) and GC-MS. Significant reductions of BTEX concentrations were observed. In addition, some products of BTEX-ozone-oxygen reactions were identified. SPME worked well as a rapid sampler for BTEX and BTEX-ozone-oxygen reaction products. No significant deterioration of the PDMS coating and no significant reduction of absorption capacity were observed after repeated exposure to ozone.

MeSH terms

  • Air / analysis*
  • Hydrocarbons / analysis*
  • Ozone / chemistry*

Substances

  • Hydrocarbons
  • Ozone