Synthesis and antiviral activity of (Z)- and (E)-2,2-[bis(hydroxymethyl)cyclopropylidene]methylpurines and -pyrimidines: second-generation methylenecyclopropane analogues of nucleosides

J Med Chem. 2004 Jan 29;47(3):566-75. doi: 10.1021/jm030316s.

Abstract

The second generation of methylenecyclopropane analogues of nucleosides 5a-5i and 6a-6i was synthesized and evaluated for antiviral activity. The 2,2-bis(hydroxymethyl)methylenecyclopropane (11) was converted to dibromo derivative 7 via acetate 12. Alkylation-elimination of adenine (16) with 7 afforded the Z/E mixture of acetates 17 + 18, which was deacetylated to give analogues 5a and 6a separated by chromatography. A similar reaction with 2-amino-6-chloropurine (19) afforded acetates 20 + 21 and, after deprotection and separation, isomers 5f and 6f. The latter served as starting materials for synthesis of analogues 5b, 5e, 5g-5i and 6b, 6e, 6g-6i. Alkylation-elimination of N(4)-acetylcytosine (22) with 7 afforded a mixture of isomers 5c + 6c which were separated via N(4)-benzoyl derivatives 23 and 24. Deprotection furnished analogues 5c and 6c. Alkylation of 2,4-bis(trimethylsilyloxy)-5-methylpyrimidine (25) with 7 led to bromo derivative 26. Elimination of HBr followed by deacetylation and separation gave thymine analogues 5d and 6d. The guanine Z-isomer 5b was the most effective against human and murine cytomegalovirus (HCMV and MCMV) with EC(50) = 0.27-0.49 microM and no cytotoxicity. The 6-methoxy analogue 5g was also active (EC(50) = 2.0-3.5 microM) whereas adenine Z-isomer 5a was less potent (EC(50) = 3.6-11.7 microM). Cytosine analogue 5c was moderately effective, but 2-amino-6-cyclopropylamino derivative 5e was inactive. All E-isomers were devoid of anti-CMV activity, and none of the analogues was significantly active against herpes simplex viruses (HSV-1 or HSV-2). The potency against Epstein-Barr virus (EBV) was assay-dependent. In Daudi cells, the E-isomers of 2-amino-6-cyclopropylamino- and 2,6-diaminopurine derivatives 6e and 6h were the most potent (EC(50) approximately 0.3 microM), whereas only the thymine Z-isomer 5d was active (EC(50) = 4.6 microM). Guanine Z-derivative 5b was the most effective compound in H-1 cells (EC(50) = 7 microM). In the Z-series, the 2-amino-6-methoxypurine analogue 5g was the most effective against varicella zoster virus (VZV, EC(50) = 3.3 microM) and 2,6-diaminopurine 5h against hepatitis B virus (HBV, EC(50) = 4 microM). Adenine analogues 5a and 6a were moderately active as substrates for adenosine deaminase.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antiviral Agents / chemical synthesis*
  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacology
  • Cyclopropanes / chemical synthesis*
  • Cyclopropanes / chemistry
  • Cyclopropanes / pharmacology
  • Cytomegalovirus / drug effects
  • HIV-1 / drug effects
  • Hepatitis B virus / drug effects
  • Herpesvirus 3, Human / drug effects
  • Herpesvirus 4, Human / drug effects
  • Humans
  • Mice
  • Models, Molecular
  • Nucleosides / chemical synthesis*
  • Nucleosides / chemistry
  • Nucleosides / pharmacology
  • Purines / chemical synthesis*
  • Purines / chemistry
  • Purines / pharmacology
  • Pyrimidines / chemical synthesis*
  • Pyrimidines / chemistry
  • Pyrimidines / pharmacology
  • Simplexvirus / drug effects
  • Stereoisomerism
  • Structure-Activity Relationship
  • Virus Replication / drug effects

Substances

  • Antiviral Agents
  • Cyclopropanes
  • Nucleosides
  • Purines
  • Pyrimidines