Activation of ERK1/2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells: role of ERK1/2 in H2O2-induced cell death

Eur J Pharmacol. 2004 Jan 12;483(2-3):163-73. doi: 10.1016/j.ejphar.2003.10.032.

Abstract

Reactive oxygen species including H(2)O(2) activate an array of intracellular signalling cascades that are closely associated with cell death and cell survival pathways. The human neuroblastoma SH-SY5Y cell line is widely used as model cell system for studying neuronal cell death induced by oxidative stress. However, at present very little is known about the signalling pathways activated by H(2)O(2) in SH-SY5Y cells. Therefore, in this study we have investigated the effect of H(2)O(2) on extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase B (PKB) activation in undifferentiated and differentiated SH-SY5Y cells. H(2)O(2) stimulated time and concentration increases in ERK1/2, JNK and PKB phosphorylation in undifferentiated and differentiated SH-SY5Y cells. No increases in p38 MAPK phosphorylation were observed following H(2)O(2) treatment. The phosphatidylinositol 3-kinase (PI-3K) inhibitors wortmannin and LY 294002 ((2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) inhibited H(2)O(2)-induced increases in ERK1/2 and PKB phosphorylation. Furthermore, H(2)O(2)-mediated increases in ERK1/2 activation were sensitive to the MAPK kinase 1 (MEK1) inhibitor PD 98059 (2'-amino-3'-methoxyflavone), whereas JNK responses were blocked by the JNK inhibitor SP 600125 (anthra[1-9-cd]pyrazol-6(2H)-one). Treatment of SH-SY5Y cells with H(2)O(2) (1 mM; 16 h) significantly increased the release of lactate dehydrogenase (LDH) into the culture medium indicative of a decrease in cell viability. Pre-treatment with wortmannin, SP 600125 or SB 203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole; p38 MAPK inhibitor) had no effect on H(2)O(2)-induced LDH release from undifferentiated or differentiated SH-SY5Y cells. In contrast, PD 98059 and LY 294002 significantly decreased H(2)O(2)-induced cell death in both undifferentiated and differentiated SH-SY5Y cells. In conclusion, we have shown that H(2)O(2) stimulates robust increases in ERK1/2, JNK and PKB in undifferentiated and differentiated SH-SY5Y cells. Furthermore, the data presented clearly suggest that inhibition of the ERK1/2 pathway protects SH-SY5Y cells from H(2)O(2)-induced cell death.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Death / drug effects
  • Cell Death / physiology
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Cell Survival / physiology
  • Dose-Response Relationship, Drug
  • Enzyme Activation / drug effects
  • Enzyme Activation / physiology
  • Humans
  • Hydrogen Peroxide / toxicity*
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / metabolism*
  • Neuroblastoma / enzymology*
  • Protein Serine-Threonine Kinases / metabolism*
  • Proto-Oncogene Proteins / metabolism*
  • Proto-Oncogene Proteins c-akt

Substances

  • Proto-Oncogene Proteins
  • Hydrogen Peroxide
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases