Mechanism of bronchoprotective effects of a novel natriuretic hormone peptide

J Allergy Clin Immunol. 2004 Jan;113(1):79-85. doi: 10.1016/j.jaci.2003.10.009.

Abstract

Background: The natriuretic hormone peptide (NHP)(99-126), a C-terminal peptide of pro-atrial natriuretic factor (proANF), induces bronchodilatory effects in people with asthma. Recently, another plasmid-encoded C-terminal peptide, pNHP(73-102), was shown to induce a long-lasting bronchoprotective effect in a mouse model of allergic asthma.

Objective: This study was carried out to determine the role of lung epithelial cells in the bronchoprotective and anti-inflammatory activity of these peptides.

Methods: Human type II alveolar epithelial cells (A549) and normal human bronchial epithelial (NHBE) cells were transfected with pNHP(73-102) to test the effect of this peptide on activation of these cells. After transfection, cells were analyzed for changes in Ca(++) and nitric oxide (NO) levels. Also, activation of NFkappaB and the extracellularly regulated kinase (ERK) 1, 2 signaling pathway was examined by luciferase reporter assay and phosphorylation studies respectively.

Results: Analysis of intracellular Ca(++) levels in pNHP(73-102) -transfected A549 or NHBE showed that the peptide increases release. This Ca(++) release was accompanied by an increase in the production of NO. Also, overexpression of pNHP(73-102), but not pVAX control, in phorbol myristate acetate-activated A549 cells resulted in a significant decrease in expression of a cotransfected nuclear factorkappaB (NFkappaB)-luciferase reporter. Similarly, pNHP(73-102) decreased TNF-alpha-induced NFkappaB activation in NHBE cells. Furthermore, NHP(73-102) but not atrial natriuretic peptide decreased phosphorylation of Erk-1, 2 in A549 cells.

Conclusions: Overexpression of pNHP(73-102) in epithelial cells causes increased production of intracellular Ca(++) and NO, with a concomitant decrease in activation of NFkappaB and ERK1, 2. These results suggest a bronchodilatory and anti-inflammatory activity of this peptide.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Atrial Natriuretic Factor / genetics
  • Atrial Natriuretic Factor / physiology*
  • Calcium / metabolism
  • Cell Line
  • Epithelial Cells / metabolism*
  • Humans
  • Immunoblotting
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / metabolism
  • NF-kappa B / metabolism
  • Nitric Oxide / metabolism
  • Nitric Oxide Synthase / metabolism
  • Nitric Oxide Synthase Type III
  • Pulmonary Alveoli / cytology*
  • Transfection

Substances

  • NF-kappa B
  • Nitric Oxide
  • Atrial Natriuretic Factor
  • NOS3 protein, human
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type III
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • Calcium