Multi-criteria decision-making for optimization of product disassembly under multiple situations

Environ Sci Technol. 2003 Dec 1;37(23):5303-13. doi: 10.1021/es0345423.

Abstract

With growing interest in recovering materials and subassemblies within consumer products at the end of their useful life, there has been an increasing interest in developing decision-making methodologies that determine how to maximize the environmental benefits of end-of-life (EOL) processing while minimizing costs under variable EOL situations. This paper describes a methodology to analyze how product designs and situational variables impact the Pareto set of optimal EOL strategies with the greatest environmental benefit for a given economic cost or profit. Since the determination of this Pareto set via enumeration of all disassembly sequences and EOL fates is prohibitively time-consuming even for relatively simple products, multi-objective genetic algorithms (GA) are utilized to rapidly approximate the Pareto set of optimal EOL trade-offs between cost and environmentally conscious actions. Such rapid calculations of the Pareto set are critical to better understand the influence of situational variables on how disassembly and recycling decisions change under different EOL scenarios (e.g., undervariable regulatory, infrastructure, or market situations). To illustrate the methodology, a case study involving the EOL treatment of a coffee maker is described. Impacts of situational variables on trade-offs between recovered energy and cost in Aachen, Germany, and in Ann Arbor, MI, are elucidated, and a means of presenting the results in the form of a multi-situational EOL strategy graph is described. The impact of the European Union Directive regarding Waste Electric and Electronic Equipment (WEEE) on EOL trade-offs between energy recovery and cost was also considered for both locations.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Algorithms
  • Conservation of Energy Resources* / economics
  • Conservation of Energy Resources* / methods
  • Conservation of Natural Resources* / economics
  • Conservation of Natural Resources* / methods
  • Cost Control
  • Decision Making*
  • Electronics*
  • Environmental Pollution / prevention & control
  • Europe
  • Models, Theoretical*