Sorption of polycyclic aromatic hydrocarbons to oil contaminated sediment: unresolved complex?

Environ Sci Technol. 2003 Nov 15;37(22):5197-203. doi: 10.1021/es0300564.

Abstract

Oil is ubiquitous in aquatic sediments and may affect partitioning and bioavailability of hydrophobic organic chemicals (HOCs). In contrast to other sedimentary hydrophobic carbon phases (natural organic matter, soot-like materials), oil residues have hardly received any attention as far as it concerns effects on HOC sorption. This paper describes experimental work dealing with such effects of oil on polycyclic aromatic hydrocarbon (PAH) sorption to sediments. Three different oils were spiked to a marine sediment in concentrations between 0 and 100 g/kg. Sediment-water distribution coefficients (Kd) for six deuterated PAHs were then determined either directly after spiking the oil or after a semi-natural weathering process in the lab (lasting for more than 2 yr). Resulting Kd values demonstrated sorption-reducing (competitive) effects at relatively low oil concentrations and sorption-enhancing effects at high oil concentrations. The latter effects only occurred above a certain threshold [i.e., ca. 15% (w/w) of oil on a sedimentary organic carbon basis] marking the oil concentration at which the hydrocarbon mixture presumably starts forming separate phases. Assuming a two-domain (organic carbon + oil) distribution model, oil-water distribution coefficients (K(oil)) for PAHs were estimated. For fresh oils, log K(oil) values appeared to be very similar for different types of oils, proportional to log K(OW) values and indistinguishable from log K(OC) values. For weathered oils, K(oil) values were also rather independent of the type of oil, but the affinity of low molecular weight PAHs for weathered oil residues appeared to be extremely high, even higher than values reported for most types of soot. Because affinities of high molecular weight PAHs for oils had not changed upon weathering, sorption of all PAHs studied (comprising a log K(OW) range of 4.6-6.9) to the weathered oil residues appeared to be more or less constant (averaged log K(oil) = 7.0 +/- 0.24). These results demonstrate that it is crucial to take the presence of oil and its weathering state into account when assessing the actual fate of PAHs in aquatic environments.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Geologic Sediments / chemistry*
  • Models, Theoretical
  • Oils / analysis*
  • Polycyclic Aromatic Hydrocarbons / analysis*
  • Surface Properties
  • Water Pollutants, Chemical / analysis*

Substances

  • Oils
  • Polycyclic Aromatic Hydrocarbons
  • Water Pollutants, Chemical