Structural study of spirolide marine toxins by mass spectrometry. Part I. Fragmentation pathways of 13-desmethyl spirolide C by collision-induced dissociation and infrared multiphoton dissociation mass spectrometry

Anal Bioanal Chem. 2004 Feb;378(4):969-76. doi: 10.1007/s00216-003-2297-z. Epub 2003 Nov 28.

Abstract

A novel group of toxins, the spirolides, has been investigated by several mass spectrometric (MS) methods to enable structure elucidation and metabolite identification. These macrocyclic compounds, produced by the dinoflagellate Alexandrium ostenfeldii, are a new class of marine phycotoxin with characteristic spiro-linked tricyclic ether and imine moieties. A crude phytoplankton extract has been shown to contain known spirolides and several unknown compounds, present at low yet significant levels. This study has focused on mass spectrometric characterization of the main component of this extract, 13-desmethyl spirolide C. Collision-induced dissociation (CID) spectra were collected on triple-quadrupole and quadrupole linear ion-trap instruments. High-resolution Fourier-transform ion cyclotron resonance MS data revealed the accurate masses of the protonated molecule and the product ions formed by infrared multiphoton dissociation. A fragmentation scheme for this toxin has been proposed to explain the formation of the collision-induced fragments. Charge-remote fragmentations dominate the CID spectra, because there is only one predominantly basic site in this molecule, and prove to be structurally informative. Extensive MS characterization of 13-desmethyl spirolide C will undoubtedly be useful in the characterization of known and unknown spirolides and other related compounds.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Dinoflagellida / chemistry
  • Infrared Rays
  • Lactones / analysis*
  • Lactones / chemistry*
  • Lactones / metabolism
  • Marine Toxins / analysis*
  • Marine Toxins / chemistry*
  • Marine Toxins / metabolism
  • Mass Spectrometry / methods
  • Molecular Structure
  • Photons*
  • Spiro Compounds

Substances

  • Lactones
  • Marine Toxins
  • Spiro Compounds
  • spirolide C