Toxicogenomic approach for assessing toxicant-related disease

Mutat Res. 2003 Nov;544(2-3):415-24. doi: 10.1016/j.mrrev.2003.06.014.

Abstract

The problems of identifying environmental factors involved in the etiology of human disease and performing safety and risk assessments of drugs and chemicals have long been formidable issues. Three principal components for predicting potential human health risks are: (1) the diverse structure and properties of thousands of chemicals and other stressors in the environment; (2) the time and dose parameters that define the relationship between exposure and disease; and (3) the genetic diversity of organisms used as surrogates to determine adverse chemical effects. The global techniques evolving from successful genomics efforts are providing new exciting tools with which to address these intractable problems of environmental health and toxicology. In order to exploit the scientific opportunities, the National Institute of Environmental Health Sciences has created the National Center for Toxicogenomics (NCT). The primary mission of the NCT is to use gene expression technology, proteomics and metabolite profiling to create a reference knowledge base that will allow scientists to understand mechanisms of toxicity and to be able to predict the potential toxicity of new chemical entities and drugs. A principal scientific objective underpinning the use of microarray analysis of chemical exposures is to demonstrate the utility of signature profiling of the action of drugs or chemicals and to utilize microarray methodologies to determine biomarkers of exposure and potential adverse effects. The initial approach of the NCT is to utilize proof-of-principle experiments in an effort to "phenotypically anchor" the altered patterns of gene expression to conventional parameters of toxicity and to define dose and time relationships in which the expression of such signature genes may precede the development of overt toxicity. The microarray approach is used in conjunction with proteomic techniques to identify specific proteins that may serve as signature biomarkers. The longer-range goal of these efforts is to develop a reference relational database of chemical effects in biological systems (CEBS) that can be used to define common mechanisms of toxicity, chemical and drug actions, to define cellular pathways of response, injury and, ultimately, disease. In order to implement this strategy, the NCT has created a consortium of research organizations and private sector companies to actively collaborative in populating the database with high quality primary data. The evolution of discrete databases to a knowledge base of toxicogenomics will be accomplished through establishing relational interfaces with other sources of information on the structure and activity of chemicals such as that of the National Toxicology Program (NTP) and with databases annotating gene identity, sequence, and function.

Publication types

  • Review

MeSH terms

  • Animals
  • Databases, Factual
  • Genomics / methods*
  • Humans
  • Oligonucleotide Array Sequence Analysis / methods
  • Pathology / methods
  • Proteomics / methods
  • Toxicology / methods*