Demand-based water options for arsenic mitigation: an experience from rural Bangladesh

Public Health. 2004 Jan;118(1):70-7. doi: 10.1016/S0033-3506(03)00135-5.

Abstract

A supply of safe drinking water is a recognized global concern. The arsenic contamination of groundwater in Bangladesh and other countries has furthered this concern. Lack of appropriate water options is one of the main barriers to the supply of safe drinking water for 30-60 million people who are exposed to the risk of drinking arsenic-contaminated water in Bangladesh. This paper describes the experience from a water supply programme for arsenic mitigation based on demand and participation of 30,000 rural people in Srinagar, a subdistrict of Bangladesh. About 85% of the 912 tubewell water samples tested had an arsenic content higher than 0.05 mg/l. The project promoted 11 options including groundwater, surface-water and rainwater-harvesting household-based options as well as community managed technologies. Most people, particularly women, wanted piped water, and hand-operated deep tubewells were also requested. Four cluster-based motorized piped water systems, 20 home-based arsenic-removal options (two types) and an arsenic-removal filter plant were installed. The public contributed about 49, 25 and 20% of the installation costs of piped water, home-based options and filter options, respectively, and 100% of all operation and maintenance costs. The household options and filter plant were abandoned within a few weeks. Reportedly, those options required too much attention, discharged small volumes of water at low rates, were difficult to maintain, and discharged poor-quality water. The proportion of families (54%) that drank arsenic-contaminated water during the final survey was significantly lower than in the baseline survey (87%). For arsenic-affected areas, it is recommended that a cluster-based piped water system be given proper consideration when selecting appropriate water options rather than household-based options or the development of new low-cost options.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arsenic*
  • Bangladesh
  • Community Participation*
  • Cost-Benefit Analysis
  • Female
  • Filtration
  • Humans
  • Male
  • Rural Health*
  • Water Pollution, Chemical*
  • Water Purification* / economics

Substances

  • Arsenic