Permeation of electrolyte water-methanol solutions through a Nafion membrane

J Colloid Interface Sci. 2003 Dec 15;268(2):476-81. doi: 10.1016/s0021-9797(03)00585-x.

Abstract

The volume flux through a cation-exchange membrane (Nafion 117) separating two equal electrolyte water-methanol solutions as a function of the pressure difference was determined under different experimental conditions. The results show that permeation rates through the membrane are strongly dependent on the methanol content of the solutions, thus the value of the flux increases when the methanol percentage increases. The effect of the electrolyte concentration of the solution on the membrane permeability is less important, although its influence becomes significant at low electrolyte concentration and high methanol content on solvent. This behavior is explained in terms of the amount of solvent sorbed by the membrane. Typical flux behaviors observed with pressure difference are linear at low pressures, exhibiting a positive deviation at higher pressure difference values.