Dry mechanochemical synthesis of hydroxyapatites from dicalcium phosphate dihydrate and calcium oxide: a kinetic study

J Biomed Mater Res A. 2003 Dec 1;67(3):927-37. doi: 10.1002/jbm.a.10025.

Abstract

Calcium phosphate ceramics have been used successfully as synthetic bone substitutes in orthopedics, dentistry, and maxillofacial surgery. One way of preparing these ceramics is the sintering of a calcium-deficient hydroxyapatite (CDHA), which can be obtained in different ways. Mechanochemistry is one possible means of synthesizing CDHA, with an expected molar calcium-to-phosphate (Ca/P) ratio +/- 0.005. The grinding can be carried out under dry or wet conditions. To optimize the experimental conditions of CDHA preparation by dry mechanosynthesis and for a better understanding of the DCPD/CaO mechanochemical reaction, we performed a kinetic study in which some of the experimental parameters were varied. Carried out with two different vertical rotating ball mills, this kinetic study showed that (1) experiments are reproducible and give as a final product a hydroxyapatite powder, formed of nano-sized crystals of around 20 nm, with a controlled Ca/P ratio; (2) the time for complete disappearance of DCPD and the time for complete reaction are in direct proportion to the mass of the ground powder; but (3) the time for complete disappearance of DCPD is independent of the Ca/P ratio while the time for complete reaction increases exponentially with the Ca/P ratio; and (4) the time for complete disappearance of DCPD corresponds to the time for complete reaction solely for Ca/P = 1.5. These observations suggest a reaction mechanism in two well differentiated stages: (First stage) CaO reacts with DCPD to give first an amorphous calcium phosphate (ACP) with a low Ca/P ratio that transforms into CDHA when its Ca/P ratio reaches 1.5. At the same time, CaO is hydrated into Ca(OH)(2) by the water produced by the reaction. (Second stage) If the Ca/P > 1.5 in the initial mixture, the excess Ca(OH)(2) is added to CDHA 1.5 by reacting with the HPO(4) group of CDHA until its Ca/P ratio reaches the expected value. The slower the reaction, the higher the Ca/P in the initial mixture.

MeSH terms

  • Biocompatible Materials / chemical synthesis
  • Calcium Compounds
  • Calcium Phosphates
  • Crystallization
  • Hydroxyapatites / chemical synthesis*
  • Kinetics
  • Oxides
  • Particle Size

Substances

  • Biocompatible Materials
  • Calcium Compounds
  • Calcium Phosphates
  • Hydroxyapatites
  • Oxides
  • amorphous calcium phosphate
  • lime
  • calcium phosphate, dibasic, anhydrous