Coulomb and liquid dimer models in three dimensions

Phys Rev Lett. 2003 Oct 17;91(16):167004. doi: 10.1103/PhysRevLett.91.167004. Epub 2003 Oct 16.

Abstract

We study classical hard-core dimer models on three-dimensional lattices using analytical approaches and Monte Carlo simulations. On the bipartite cubic lattice, a local gauge field generalization of the height representation used on the square lattice predicts that the dimers are in a critical Coulomb phase with algebraic, dipolar correlations, in excellent agreement with our large-scale Monte Carlo simulations. The nonbipartite fcc and Fisher lattices lack such a representation, and we find that these models have both confined and exponentially deconfined but no critical phases. We conjecture that extended critical phases are realized only on bipartite lattices, even in higher dimensions.