Emerging antiobesity drugs

Expert Opin Emerg Drugs. 2003 May;8(1):217-37. doi: 10.1517/14728214.8.1.217.

Abstract

The healthcare burden that the obesity epidemic now poses in highly significant, in part due to increased risk of secondary chronic diseases such as hypertension. A lack of physical activity and high fat diets are major factors contributing to this condition. However, increasingly apparent is the genetic predisposition of individuals and ethnic groups to obesity. Present treatment strategies are currently inadequate and unlikely to have a major effect on the future prevalence of obesity. To slow the obesity epidemic, the source needs to be tackled now through fundamental research into the mechanisms by which obesity is manifest, and education on the risks and how to prevent it. This article will describe current and emerging treatments for obesity and review the recent advances in research that may provide the antiobesity treatments of the future. Research into obesity has escalated at considerable pace, catalysed by the discovery of the obese gene product leptin. Leptin is secreted by adipose tissue and acts via specific receptors in the brain to engage central neural pathways involved in regulating energy homeostasis. Since this discovery, numerous significant advances have been made in our understanding of how the brain integrates and responds to central and peripheral signals involved in maintaining energy homeostasis, and how disruption of these signalling mechanisms can manifest as obesity. As a consequence of these findings, numerous potential sites for therapeutic intervention into this condition have and are materializing. The aim of this review is to highlight current treatment strategies for obesity, recent advances in our understanding of the central neural control of energy balance, and what the authors consider to be the most promising targets for the development of novel antiobesity drugs in the future. Thus, the review focuses on leptin, neuropeptide Y, melanocortin and ghrelin signalling at the level of the CNS, and strategies targeting the sympathetic innervation of fat cells at the periphery.

Publication types

  • Review

MeSH terms

  • Animals
  • Anti-Obesity Agents / chemistry
  • Anti-Obesity Agents / therapeutic use*
  • Humans
  • Obesity / drug therapy*
  • Obesity / metabolism
  • Technology, Pharmaceutical / methods
  • Technology, Pharmaceutical / trends*

Substances

  • Anti-Obesity Agents