Atom transfer as a preparative tool in coordination chemistry. Synthesis and characterization of Cr(V) nitrido complexes of bidentate ligands

Inorg Chem. 2003 Nov 17;42(23):7608-15. doi: 10.1021/ic034777f.

Abstract

The transfer of a terminal nitrido ligand from Mn(V)(N)(salen) to Cr(III) complexes is explored as a new preparative route to Cr(V) nitrido complexes. Reaction of Mn(V)(N)(salen) with labile CrCl(3)(THF)(3) in acetonitrile solution precipitates [Mn(Cl)(salen)].(CH(3)CN) and yields a solution containing a mixture of Cr(V) nitrido species with only labile auxiliary ligands. From this solution Cr(V) nitrido complexes with bidentate monoanionic ligands can be obtained in high yields. Five coordinate complexes of 8-hydroxoquinolinate (quin), 1,3-diphenylpropane-1,3-dionate (dbm), and pyrrolidinedithiocarbamate (pyr-dtc) have been structurally characterized: Cr(N)(quin)(2) (1) crystallizes as compact orange prisms in the triclinic space group P with cell parameters a = 7.2450(6) A, b = 8.1710(4) A, c = 13.1610(12) A, alpha = 80.519(6) degrees, beta = 75.721(7) degrees, gamma = 75.131(5) degrees, V = 725.47(10) A(3), Z = 2. Cr(N)(dbm)(2) (2) crystallizes as green rhombs in the orthorhombic space group Pbca with cell parameters a = 14.6940(6) A, b = 16.4570(18) A, c = 19.890(3) A, V = 4809.8(8) A(3), Z = 8. Cr(N)(pyr-dtc)(2) (3) crystallizes as orange prisms in the monoclinic space group P21/c with cell parameters a = 14.8592(14) A, b = 8.5575(5) A, c = 11.8267(12) A, beta = 106.528(7) degrees, V = 1441.7(2) A(3), Z = 4. Complexes 2 and 3 represent new coordination environments for first row transition metal nitrido complexes. The d-orbital energy splitting in these systems with relatively weak equatorial donors differs significantly from the pattern in vanadyl and the previously known first row transition metal nitrido complexes. The d(x)2(-)(y)2 orbital in 2 and 3 is lower in energy and well resolved from the M-N pi orbitals [d(zx),d(yz)].