Unique in vivo modifications of coagulation factor V produce a physically and functionally distinct platelet-derived cofactor: characterization of purified platelet-derived factor V/Va

J Biol Chem. 2004 Jan 23;279(4):2383-93. doi: 10.1074/jbc.M308600200. Epub 2003 Oct 31.

Abstract

Platelet- and plasma-derived factor Va (FVa) serve essential cofactor roles in prothrombinase-catalyzed thrombin generation. Platelet-derived FV/Va, purified from Triton X-100 platelet lysates was composed of a mixture of polypeptides ranging from approximately 40 to 330 kDa, mimicking those visualized by Western blotting of platelet lysates and releasates with anti-FV antibodies. The purified, platelet-derived protein expressed significant cofactor activity such that thrombin activation led to only a 2-3-fold increase in cofactor activity yet expression of a specific activity identical to that of purified, plasma-derived FVa. Physical and functional differences between the two cofactors were identified. Purified, platelet-derived FVa was 2-3-fold more resistant to activated protein C-catalyzed inactivation than purified plasma-derived FVa on the thrombin-activated platelet surface. The heavy chain subunit of purified, platelet-derived FVa contained only a fraction ( approximately 10-15%) of the intrinsic phosphoserine present in the plasma-derived FVa heavy chain and was resistant to phosphorylation at Ser(692) catalyzed by either casein kinase II or thrombin-activated platelets. MALDI-TOF mass spectrometric analyses of tryptic digests of platelet-derived FV peptides detected an intact heavy chain uniquely modified on Thr(402) with an N-acetylglucosamine or N-acetylgalactosamine, whereas Ser(692) remained unmodified. N-terminal sequencing and MALDI-TOF analyses of platelet-derived FV/Va peptides identified the presence of a full-length heavy chain subunit, as well as a light chain subunit formed by cleavage at Tyr(1543) rather than Arg(1545) accounting for the intrinsic levels of cofactor activity exhibited by native platelet-derived FVa. These collective data are the first to demonstrate physical differences between the two FV cofactor pools and support the hypothesis that, subsequent to its endocytosis by megakaryocytes, FV is modified to yield a platelet-derived cofactor distinct from its plasma counterpart.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Blood Coagulation
  • Blood Platelets / metabolism
  • Factor V / chemistry*
  • Factor V / isolation & purification
  • Factor V / metabolism
  • Humans
  • Platelet Activation
  • Platelet-Derived Growth Factor / chemistry*
  • Platelet-Derived Growth Factor / isolation & purification
  • Platelet-Derived Growth Factor / metabolism
  • Structure-Activity Relationship
  • Thrombin / metabolism

Substances

  • Platelet-Derived Growth Factor
  • Factor V
  • Thrombin