Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy

Appl Opt. 2003 Oct 20;42(30):6159-65. doi: 10.1364/ao.42.006159.

Abstract

A laser-induced breakdown spectroscopy (LIBS) technique has been applied for detection of unburned carbon in fly ash, and an automated LIBS unit has been developed and applied in a 1000-MW pulverized-coal-fired power plant for real-time measurement, specifically of unburned carbon in fly ash. Good agreement was found between measurement results from the LIBS method and those from the conventional method (Japanese Industrial Standard 8815), with a standard deviation of 0.27%. This result confirms that the measurement of unburned carbon in fly ash by use of LIBS is sufficiently accurate for boiler control. Measurements taken by this apparatus were also integrated into a boiler-control system with the objective of achieving optimal and stable combustion. By control of the rotating speed of a mill rotary separator relative to measured unburned-carbon content, it has been demonstrated that boiler control is possible in an optimized manner by use of the value of the unburned-carbon content of fly ash.