Conformational perturbation of the anticancer nucleotide arabinosylcytosine on Z-DNA: molecular structure of (araC-dG)3 at 1.3 A resolution

Biopolymers. 1992 Nov;32(11):1559-69. doi: 10.1002/bip.360321113.

Abstract

The left-handed Z-DNA structure of an araC-containing (where araC stands for arabinosylcytosine) hexamer, (araC-dG)3, has been solved by x-ray diffraction analysis at 1.3 A resolution. This hexamer was crystallized in the hexagonal P6(5)22 (a = b = 17.96 A, c = 43.22 A) space group in which the hexamers have statistically disordered packing arrangement along the 6(5) screw axis, yet the crystals diffract x-rays to high resolution. Its structure has been refined by the constrained least square refinement to a final R factor of 0.287 using 737 [> 3.0 sigma(F)] observed reflections. The asymmetric unit of the unit cell contains only a dinucleotide, 5'-p (araC)p(dG). The overall conformation resembles that of the canonical Z-DNA, but with some differences in details. The O2' hydroxyl groups of the araC residues form intramolecular hydrogen bonds with N2 of the 5'-guanine residues. In the deep groove of Z-DNA, these hydroxy groups replace the bridging water molecules that stabilize the guanine in the syn conformation. The results reinforce the earlier observation made by the structural analysis of another hexamer, d(CG[araC]GCG), with a mono-substitution of araC [M.-K. Teng, Y.-C. Liaw, G. A. van der Marel, J. H. van Boom, and A. H.-J. Wang (1989) Biochemistry, vol. 28, pp. 4923-4928]. These two structures show that araC residue can be incorporated readily into the Z structure and probably facilitates the B to Z transition, as supported by uv absorption spectroscopic studies in a number of araC-containing oligonucleotides. The potential biological roles of the araC-modified Z-DNA are discussed.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Cytarabine / pharmacology*
  • DNA / chemistry
  • DNA / drug effects*
  • Molecular Sequence Data
  • Molecular Structure
  • Nucleic Acid Conformation / drug effects
  • Oligonucleotides / chemistry*

Substances

  • Oligonucleotides
  • Cytarabine
  • DNA