Tailoring the catalytic performance of sol-gel-encapsulated tetra-n-propylammonium perruthenate (TPAP) in aerobic oxidation of alcohols

Chemistry. 2003 Oct 17;9(20):5067-73. doi: 10.1002/chem.200305146.

Abstract

Sol-gel nanohybrid silica particles organically modified and doped with the ruthenium species tetra-n-propylammonium perruthenate (TPAP) are highly efficient catalysts for the selective oxidation of alcohols to carbonyl groups with O(2) at low pressure in toluene. The materials are easily prepared by a one-step sol-gel process, and their catalytic performance can be optimised by tailoring the conditions of their synthesis by hydrolytic co-polycondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes R-Si(OMe)(3) in the presence of TPAP. Eventually, heterogeneous catalysts considerably more active than the unsupported perruthenate were obtained, while also being leach-proof and recyclable. The correlation between the materials' activity, surface polarity and textural properties suggests valuable information on the chemical behaviour of sol-gel catalytic materials in oxidation catalysis; this is of interest in view of the importance of efficient solid catalysts for the selective oxidation of alcohols with O(2).