Mutagenicity of nitroaromatic degradation compounds

Environ Toxicol Chem. 2003 Oct;22(10):2293-7. doi: 10.1897/02-220.

Abstract

The mutagenicity of 2,4-dinitrotoluene (24DNT), and 2,6-dinitrotoluene (26DNT), and their related transformation products such as hydroxylamine and amine derivatives, which are formed by Clostridium acetobutylicum, were tested in crude cell extracts using Salmonella typhimurium TA100. A previous publication already reported the mutagenic activities of 2,4,6-trinitrotoluene (TNT) and its related hydroxylamine derivatives in this test system. A time course of the mutagenicity during the anaerobic transformation of TNT, 24DNT, and 26DNT was also investigated under the same conditions to compare with the results from the pure compounds. The monohydroxylamino intermediates 2-hydroxylamino-4-nitrotoluene (2HA4NT), 4-hydroxylamino-2-nitrotoluene (4HA2NT) and 2-hydroxylamino-6-nitrotoluene (2HA6NT) formed during anaerobic transformation of dinitrotoluenes were proven to be mutagenic in the Ames test using Salmonella typhimurium TA100. This study reports that 4HA2NT is the most stable derivative, whereas 2HA4NT and 2HA6NT are less stable and these intermediates are mutagenic in the Ames test. Both 24DNT and 26DNT and their final metabolites 2,4-diaminotoluene (24DAT) and 2,6-aminotoluene (26DAT) appeared nonmutagenic. In a time-course study of TNT degradation, the temporal sample containing 85% of 2,4-dihydroxylamino-6-nitrotoluene (24HA6NT) is most mutagenic. These observations suggest that the bioremediation approach for treatment of 24DNT and 26DNT should be carried past the hydroxylamino intermediate.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Air Pollutants, Occupational / toxicity*
  • Bacteria, Anaerobic
  • Biodegradation, Environmental
  • Carcinogens / toxicity*
  • Clostridium / genetics
  • Dinitrobenzenes / toxicity*
  • Mutagenicity Tests
  • Salmonella typhimurium / genetics

Substances

  • Air Pollutants, Occupational
  • Carcinogens
  • Dinitrobenzenes
  • 2,4-dinitrotoluene
  • 2,6-dinitrotoluene