Field activity and storage stability of Anagrapha falcifera nucleopolyhedrovirus (AfMNPV) in spray-dried lignin-based formulations

J Econ Entomol. 2003 Aug;96(4):1066-75. doi: 10.1603/0022-0493-96.4.1066.

Abstract

A multiple-embedded nucleopolyhedrovirus isolated from Anagrapha falcifera (Kirby) (AfMNPV) has potential to be developed into a microbial bioinsecticide because the host range includes several economic pests. We tested spray-dried AfMNPV formulations after storage for insecticidal activity based on bioassays with neonate Trichoplusia ni (Hübner). Eight experimental lignin-based spray-dried formulations, a glycerin-based formulation, and an unformulated sample were made with virus stock from three commercial production lots. Samples of these formulations were stored at 30 degrees C in individually sealed sample containers for destructive sampling after 1, 3, and 6 mo whereas the remaining product was stored in glass jars under refrigeration for up to 30 mo. Spray drying did not significantly reduce the initial LC50s of AfMNPV in experimental formulations compared with unformulated virus that was not spray dried. Refrigerated storage for 6 mo did not significantly lower virus activity of formulated samples compared with the unformulated AfMNPV stored frozen, while samples stored for 30 mo had higher LC50 values determined by both droplet and leaf feeding assays. When stored at 30 degrees C, most formulations (22 of 24) maintained insecticidal activity for 3 mo, but most (21 of 24) lost significant activity after 6 mo of storage. The glycerin-based formulation also lost activity within 6 mo of storage at 30 degrees C when compared with frozen unformulated virus, but did not lose activity when stored refrigerated for up to 30 mo. These formulations were evaluated after 7 mo at 4 degrees C for residual insecticidal activity when applied to field grown cabbage. Insecticidal activity was determined against T. ni neonates for treated leaf samples collected at 3, 7, 27, and 51 h after application of 2.5 x 10(12) obs/ha. Field tests showed no differences in activity among samples of stored formulations and one freshly made formulation. Spray-dried formulations had significantly higher insecticidal activity (67.5% mortality) compared with the unformulated treatment (30% mortality) sampled 3 h after application. At 3, 7, and 27 h after application, the spray-dried formulations had higher residual activity (67%, 59%, and 42% mortality, respectively), compared with the commercial glycerin-based formulation (61%, 38%, and 23% mortality, respectively). These experiments demonstrated that AfMNPV in lignin-based spray-dried formulations had a shelf-life of up to 3 mo at 30 degrees C and up to 30 mo at 4 degrees C, and with longer residual insecticidal activity in the field compared with unformulated or a glycerin formulation.

MeSH terms

  • Animals
  • Insecticides
  • Lignin*
  • Moths / virology
  • Nucleopolyhedroviruses / physiology*
  • Pest Control, Biological*
  • Plants

Substances

  • Insecticides
  • Lignin