Activation of the carcinogen N-hydroxy-N-(2-fluorenyl)benzamide via chemical and enzymatic oxidations. Comparison to oxidations of the structural analogue N-hydroxy-N-(2-fluorenyl)acetamide

Chem Res Toxicol. 1992 Jul-Aug;5(4):520-7. doi: 10.1021/tx00028a010.

Abstract

Chemical or enzymatic oxidations of the carcinogen N-hydroxy-N-(2- fluorenyl)benzamide (N-OH-2-FBA) were investigated under the conditions facilitating one-electron oxidation or oxidative cleavage of N-hydroxy-N-(2-fluorenyl)acetamide (N-OH-2-FAA). HPLC methods were developed for separation and quantitation of the above hydroxamic acids and their respective oxidation products. To identify the products of oxidation of N-OH-2-FBA, N-(benzoyloxy)-2-FBA (N-BzO-2-FBA) was synthesized and shown to undergo ortho rearrangement to 1- and 3-BzO-2-FBA. Oxidation of N-OH-2-FBA (4.88 mM) with alkaline K3Fe(CN)6 in benzene was complete and yielded equimolar amounts of 2-nitrosofluorene (2-NOF) and the ester (chiefly N-BzO-2-FBA), indicative of one-electron oxidation to nitroxyl free radical which undergoes bimolecular dismutation. However, one-electron oxidation of N-OH-2-FBA (30 or 10 microM) by horseradish peroxidase/H2O2 at pH 7 or myeloperoxidase/H2O2 at pH 6.5 yielded only approximately 10% as much product as N-OH-2-FAA (30 microM). The addition of 0.1 mM Br- +/- 0.1 M Cl- at pH 4 to 6.5 increased 2-NOF formation in MPO/H2O2-catalyzed oxidations. Simulations of these oxidations with HOCl/Cl- or HOBr/Br- showed that the latter was more efficient, converting N-OH-2-FAA almost completely and less than or equal to 62% of N-OH-2-FBA to 2-NOF. The amounts of the ester (N- and o-BzO-2-FBA), which by itself did not contribute to 2-NOF formation or significant substrate regeneration, indicated that approximately 10% of 2-NOF originated from one-electron oxidation.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Biotransformation
  • Carcinogens / chemistry*
  • Carcinogens / metabolism
  • Chromatography, High Pressure Liquid
  • Horseradish Peroxidase / metabolism
  • Hydroxyacetylaminofluorene / analogs & derivatives*
  • Hydroxyacetylaminofluorene / chemistry*
  • Hydroxyacetylaminofluorene / metabolism
  • Oxidation-Reduction
  • Peroxidase / metabolism

Substances

  • Carcinogens
  • N-hydroxy-N-(2-fluorenyl)benzamide
  • Hydroxyacetylaminofluorene
  • Horseradish Peroxidase
  • Peroxidase