Exercise-induced changes in coagulation and fibrinolysis in healthy populations and patients with cardiovascular disease

Sports Med. 2003;33(11):795-807. doi: 10.2165/00007256-200333110-00002.

Abstract

This review highlights the clinical significance of coagulation and fibrinolytic responses, and adaptations in healthy individuals and patients with cardiovascular disease (CVD). Much of the review focuses on indicators of the potential for coagulation and fibrinolysis. The terms 'coagulation potential' and 'fibrinolytic potential' are used frequently, as much of the literature in the area of exercise haemostasis evaluates factors that reflect an increased potential for coagulation, while coagulation per se, may or may not be occurring. Similarly, fibrinolysis is definitively the lysis of inappropriate or excessive blood clot, which may or may not be occurring when the enzymes that stimulate fibrinolysis are activated. Nevertheless, markers of coagulation and fibrinolytic potential are associated with CVD, ischaemic events, and cardiovascular mortality. Additionally, fibrinolytic potential is associated with other established CVD risk factors. Ischaemic events triggered by physical exertion are more likely to occur due to an occlusive thrombus, suggesting the exercise-induced responses related to haemostasis are of clinical significance. The magnitude of increase in coagulation potential, platelet aggregation and fibrinolysis appears to be primarily determined by exercise intensity. Patients with CVD may also have a larger increase in coagulation potential during acute exercise than healthy individuals. Additionally, the magnitude of the fibrinolytic response is largely related to the resting fibrinolytic profile of the individual. In particular, high resting plasminogen activator inhibitor-1 may diminish the magnitude of tissue plasminogen activator response during acute exercise. Therefore, acute responses to exercise may increase the risk of ischaemic event. However, chronic aerobic exercise training may decrease coagulation potential and increase fibrinolytic potential in both healthy individuals and CVD patients. Due to the aforementioned importance of resting fibrinolysis on the fibrinolytic response to exercise, chronic aerobic exercise training may cause favourable adaptations that could contribute to decreased risk for ischaemic event, both at rest and during physical exertion.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adaptation, Physiological
  • Blood Coagulation / physiology*
  • Cardiovascular Diseases / physiopathology*
  • Exercise / physiology*
  • Fibrinolysis / physiology*
  • Humans
  • Reference Values
  • Risk Factors