Tetrameric, trititanium(IV)-substituted polyoxotungstates with an alpha-Dawson substructure as soluble metal-oxide analogues: molecular structure of the giant "tetrapod" [(alpha-1,2,3-P2W15Ti3O62)4[mu3-Ti(OH)3]4Cl]45-

Chemistry. 2003 Sep 5;9(17):4077-83. doi: 10.1002/chem.200305182.

Abstract

The preparation and structural characterization of the novel polyoxoanion [(alpha-1,2,3-P(2)W(15)Ti(3)O(62))(4)[mu(3)-Ti(OH)(3)](4)Cl](45-) (1 a; abbreviated to [TiO(6)](16); FW approximately 16 000) which consists of four tri-Ti(IV)-1,2,3-substituted alpha-Dawson substructures, four Ti(OH)(3) bridging groups, and one encapsulated Cl(-) ion, are described. A water-soluble, all-inorganic composition compound of the tetrameric Ti-O-Ti-bridged anhydride form, Na(x)H(45-x)[1 a].y H(2)O (1; x=16-19, y=60-70), which was afforded by the reaction of the tri-lacunary Dawson polyoxotungstate Na(12)[B-alpha-P(2)W(15)O(56)].19 H(2)O with an excess of TiCl(4) in aqueous solution, was obtained as analytically pure, homogeneous colorless crystals. Single-crystal X-ray structure analysis revealed that 1 a was an inorganic, giant "tetrapod"-shaped molecule (inscribed to a sphere with a diameter of approximately 32 A) with approximately T(d) symmetry, in which the 16 edge- and/or corner-shared TiO(6) octahedra were contained. This number of TiO(6) octahedra was larger than that found in other titanium(IV)-substituted polyoxotungstates. Complex 1 was characterized by complete elemental analysis, TG/DTA, FTIR, UV/Vis absorption, and solution ((31)P and (183)W) NMR spectroscopy. The longest wavelength band in the UV/Vis absorption spectra of 1 in water was attributed to the O-->Ti(IV) ligand-to-metal charge-transfer (LMCT) transition: the wavelength of the LMCT band increased linearly as the number of TiO(6) octahedra contained in the Keggin and Dawson polyoxoanions increased. The Ti(n) chromophores formed in the Keggin and Dawson polyoxotungstates are water-soluble analogues of solid TiO(2) or SrTiO(3) as light-semiconductors and photocatalysts.