[Patterns and characteristics of ecological water demand in west arid zone of China--a case study of green corridor in the lower reaches of Tarim River]

Ying Yong Sheng Tai Xue Bao. 2003 Apr;14(4):520-4.
[Article in Chinese]

Abstract

Ecological water demand has some characteristics. The ecological water demand that was used for protection of the green corridor in the lower reaches of Tarim River was chiefly water demand by natural vegetation below Daxihaizi reservoir, and it included gross restoration water amount of ground water level and gross stand water amount in all over the lower reaches of Tarim River. The gross restoration water amount of ground water level mainly included restoration water amount of ground water level and lateral discharge, as well as evaporation of the course. Based on the drainage target of Alagan in 2005, gross ecological water demand was the gross water amount of restoration ground water level between Daxihaizi and Alagan, which would be 13.20 x 10(8) m3. Meanwhile, the annual average water demand would be 2.64 x 10(8) m3. Because the drainage target and vegetation protection target would be all Taitema lake in 2010, the gross ecological water demand included not only the gross water amount of restoration ground water level between Alagan and Taitema lake, but also the ecological stand water amount between Daxihaizi and Taitema lake, which would be 18.32 x 10(8) m3. Meanwhile, the annual average water demand would be 3.66 x 10(8) m3. From the year 2010 to 2030, the gross ecological water demand would be consisted of two parts (the gross stand water amount between Daxihaizi and Alagan, and the water demand by increased vegetation of 18.67 x 10(4) hm2), and the total ecological water demand during the 20 years would be 139.00 x 10(8) m3. Meanwhile, the annual average water demand would be 6.95 x 10(8) m3.

Publication types

  • English Abstract
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agriculture*
  • China
  • Conservation of Natural Resources*
  • Ecology*
  • Environment
  • Volatilization
  • Water Supply*