Characterisation of technologically proficient wild Lactococcus lactis strains resistant to phage infection

Int J Food Microbiol. 2003 Sep 15;86(3):213-22. doi: 10.1016/s0168-1605(03)00042-4.

Abstract

The aim of this work was to establish whether Lactococcus lactis strains isolated from spontaneous dairy fermentations exhibited useful milk-processing capabilities and resistance to bacteriophage infection in order to be used as components in starter formulations. The 33 out of 100 isolates of L. lactis, originated from farmhouse cheeses, were found to be resistant to a collection of 34 phages belonging to the c2 and 936 groups. Six of the isolates were discarded as potential starters because they were lysogenic and other five because they produced tyramine. Plasmid and chromosomal profiles of the 22 remaining isolates allowed their classification into 16 different strains. All of these were good lactic acid producers from lactose, moderately proteolytic and, in eight cases, diacetyl production from citrate was observed. The mechanism(s) leading to the phenotype of phage resistance was identified for all the strains used in this study. Inhibition of adsorption was the most frequent one, although genetic determinants for some abortive infection systems were also detected (abiB, abiG and abiI). Frequently, more than one mechanism was present in the same strain. One of the strains, L. lactis IPLA542, was selected as a model starter for pilot fermentations. It clotted milk normally both in the absence and in the presence of phage at concentrations that completely abolished the process when promoted by a phage-susceptible strain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Animals
  • Bacteriophages*
  • Biogenic Amines / metabolism
  • Cheese / microbiology*
  • Fermentation
  • Food Microbiology
  • Genotype
  • Lactococcus lactis / genetics
  • Lactococcus lactis / virology*
  • Milk / microbiology*

Substances

  • Biogenic Amines