Coxsackievirus B3-induced apoptosis and caspase-3

Cell Res. 2003 Jun;13(3):203-9. doi: 10.1038/sj.cr.7290165.

Abstract

Cell death can be classified into two categories: apoptosis and necrosis. Apoptotic pathway can be either caspase-dependent or caspase-independent. Caspase-independent cytopathic effect (CPE) has been described. In order to evaluate the pattern of HeLa cell death induced by Coxsackievirus B3 (CVB3) and whether apoptosis involves caspase activation, we co-cultivated HeLa cells with CVB3 and detected the cytopathic changes, the alteration of mRNA and protein expression of caspase-3 gene plus caspase-3 activity, as well as analyzing DNA fragmentation before and after caspase-3 activity inhibition. According to the results, we propose that CVB3 may induce apoptosis and necrosis in HeLa cells, the latter appearing much earlier. Caspase-3 is activated at the levels of both transcription and translation, and procaspase-3 is proteolytically cleaved, thus leading to the continuous increasing of both caspase-3 precursor protein and its subunit. However, besides CPE, apoptosis induced by CVB3 is not a direct consequence of the activation of caspase-3, or caspase-3 is not the only effector molecule in apoptotic cell death, for caspase-3 inhibitor can not decrease DNA fragmentation. Some other biochemical mechanisms may participate in the process, whose role weakens the effect of inhibiting caspase-3 activity.

MeSH terms

  • Apoptosis / drug effects
  • Apoptosis / physiology*
  • Caspase 3
  • Caspase Inhibitors
  • Caspases / genetics
  • Caspases / metabolism*
  • DNA Fragmentation / drug effects
  • Enterovirus B, Human / physiology*
  • Enzyme Activation / drug effects
  • Enzyme Inhibitors / pharmacology
  • Flow Cytometry
  • HeLa Cells / ultrastructure
  • HeLa Cells / virology
  • Humans
  • Microscopy, Electron
  • Oligopeptides / pharmacology
  • Protein Biosynthesis / genetics
  • RNA, Messenger / metabolism
  • Time Factors
  • Transcription, Genetic / genetics

Substances

  • Caspase Inhibitors
  • Enzyme Inhibitors
  • Oligopeptides
  • RNA, Messenger
  • CASP3 protein, human
  • Caspase 3
  • Caspases