Involvement of amygdala networks in epileptiform synchronization in vitro

Neuroscience. 2003;120(1):75-84. doi: 10.1016/s0306-4522(03)00262-8.

Abstract

We used field potential and intracellular recordings in rat brain slices that included the hippocampus, a portion of the basolateral/lateral nuclei of the amygdala (BLA) and the entorhinal cortex (EC). Bath application of the convulsant 4-aminopyridine (50 microM) to slices (n=12) with reciprocally connected areas, induced short-lasting interictal-like epileptiform discharges that (i) occurred at intervals of 1.2-2.8 s, (ii) originated in CA3, and (iii) spread to EC and BLA. Cutting the Schaffer collaterals abolished them in both parahippocampal areas where slower interictal-like (interval of occurrence=4-17 s) and prolonged ictal-like discharges (duration=15+/-6.9 s, mean+/-S.D., n=7) appeared. These new types of epileptiform activity originated in either EC or BLA. Similar findings were obtained in slices (n=19) in which the hippocampus outputs were not connected with the EC and BLA under control conditions. Cutting the EC-BLA connections made independent slow interictal- and ictal-like activities appear in both areas (n=5). NMDA receptor antagonism (n=6) abolished ictal-like discharges and reduced the duration of the slow interictal-like events. Repetitive stimulation of BLA at 0.5-1 Hz in Schaffer collateral cut slices, induced interictal-like epileptiform depolarizations in EC and reversibly blocked ictal-like activity (n=14). Thus, CA3 outputs in intact slices entrain EC and BLA networks into an interictal-like pattern that inhibits the propensity of these parahippocampal areas to generate prolonged ictal-like paroxysms. Accordingly, NMDA receptor-dependent ictal-like events are initiated in BLA or EC once the propagation of CA3-driven interictal-like discharges to these areas is abated by cutting the Schaffer collaterals. Similar inhibitory effects also occur by activating BLA outputs directed to EC at rates that mimic the CA3-driven interictal-like pattern.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 4-Aminopyridine / pharmacology
  • Action Potentials / drug effects
  • Action Potentials / physiology*
  • Amygdala / drug effects
  • Amygdala / physiology*
  • Animals
  • Male
  • Nerve Net / drug effects
  • Nerve Net / physiology*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • 4-Aminopyridine