An applanation resonator sensor for measuring intraocular pressure using combined continuous force and area measurement

Invest Ophthalmol Vis Sci. 2003 Jul;44(7):3017-24. doi: 10.1167/iovs.02-1116.

Abstract

Purpose: For diagnostic purposes and for follow-up after treatment, it is important to have simple and reliable methods for measuring intraocular pressure (IOP). The purpose of this study was to develop a new applanation method for IOP measurement that uses combined continuous force and area measurement and to develop and evaluate an applanation resonator sensor (ARS) tonometer based on that method.

Methods: The tonometer was developed and evaluated in an in vitro porcine eye model, in which enucleated eyes were pressurized with a saline column. A model assuming that the applanation principle is valid over a certain interval of contact area was proposed. Continuous contact area was measured with a resonator sensor device, and contact force was measured with a force transducer, both mounted together in one probe. Reference IOP was measured in the vitreous chamber (IOP(VC)) with a standard fluid pressure transducer.

Results: An optimization algorithm determined the applanation interval that was optimal for calculating IOP(ARS). The corresponding time interval was 30 +/- 3 to 77 +/- 4 ms (mean +/- SD, n = 418) after initial contact. The proposed model showed a degree of explanation of R(2 [supi]) = 0.991 (n = 410, six eyes), corresponding to a correlation of r = 0.995 (n = 410) between IOP(ARS) and IOP(VC). The within-eyes precision (i.e., 95% confidence interval for the residuals between IOP(ARS) and IOP(VC)) was +/- 1.8 mm Hg (n = 410, six eyes).

Conclusions: In this study, the ARS method for measuring IOP was evaluated in an in vitro porcine eye model and showed high precision. The ARS method is, to the authors' knowledge, the first to combine simultaneous, continuous sampling of both parameters included in the applanation principle: force and area. Consequently, there is a potential for reducing errors in clinical IOP tonometry.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Animals
  • Equipment Design
  • Intraocular Pressure*
  • Pressure
  • Reproducibility of Results
  • Swine
  • Tonometry, Ocular / instrumentation*