Reproductive energy investment in corals: scaling with module size

Oecologia. 2003 Aug;136(4):524-31. doi: 10.1007/s00442-003-1305-5. Epub 2003 Jun 7.

Abstract

In colonial modular organisms, differences in module size and colony growth patterns among species have the potential to impose varying constraints on reproductive investment. Here, we compare reproductive output among seven morphologically different species of spawning reef corals, and analyse the relationship between reproductive output and module (polyp) size. Reproductive output ranged between 132 and 384 J cm(-2), with lipid constituting the key indicator of energy investment. Lipid decreased by 85-100%, whereas protein and carbohydrate were relatively invariant between pre- and post-spawning tissues in all species, representing 1-15% and <1%, respectively, of the energy investment to reproductive output. The ratio of energy content in reproductive to somatic tissues (gonadosomatic index, GSI) varied among species from 0.20 (Symphyllia recta) to 1.31 (Acropora tenuis), the latter being the highest value reported for any iteroparous marine invertebrate. Surprisingly, small-polyped species (Acropora, Montipora) had 2- to 6-fold higher GSIs than large-polyped ones (Lobophyllia, Symphyllia). Energy equivalents of tissues increased with the 1.50-1.76 power of polyp diameter for somatic tissues and with the 1.42-1.80 power of polyp diameter for reproductive output. In both cases, increases in energy equivalents with polyp diameter were less than the scaling exponent of 3 predicted for an isometric relationship between tissue volume (or mass) and polyp diameter, indicating significant constraints of space, design or physiological energetics with increasing polyp size. We hypothesise that such constraints have played a key role in the evolution of modularity in cnidarians.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Anthozoa / anatomy & histology*
  • Anthozoa / physiology*
  • Biological Evolution
  • Body Constitution*
  • Energy Metabolism
  • Female
  • Male
  • Models, Theoretical*
  • Reproduction*