Tumor-targeted gene transfer with DNA polyplexes

Somat Cell Mol Genet. 2002 Nov;27(1-6):85-95. doi: 10.1023/a:1022988008131.

Abstract

Systemic gene delivery systems are needed for therapeutic applications; in some situations, target cells might be spread throughout the organism, as in the case of cancer metastases, which can be reached only via the systemic route. Within the class of nonviral vectors, polymer-based transfection particles named DNA polyplexes and lipid-based systems named DNA lipoplexes are being developed for this purpose. For systemic circulation, masking the surface charge of DNA complexes has to be accomplished to avoid interactions with plasma components, erythrocytes, and the reticuloendothelial system. Among other vector formulations, polyplexes based on polyethylenimine (PEI), shielded with polyethylene glycol (PEG), and linked to the receptor binding ligands transferrin (Tf) or epidermal growth factor (EGF) have been developed. Complexes were found to mediate efficient gene transfer into tumor cell lines in a receptor-dependent and cell-cycle-dependent manner. Systemic administration of surface-shielded Tf-PEI polyplexes into the tail vein of mice resulted in preferential gene delivery into distantly growing subcutaneous tumors. In contrast, application of positively charged PEI polyplexes directed gene transfer primarily to the lung.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Nucleus / drug effects
  • Cell Nucleus / genetics
  • DNA / administration & dosage*
  • DNA / chemistry*
  • Epidermal Growth Factor / administration & dosage
  • Epidermal Growth Factor / genetics
  • Epidermal Growth Factor / metabolism
  • Gene Transfer Techniques*
  • Genetic Therapy / methods
  • Humans
  • Ligands
  • Macromolecular Substances
  • Mice
  • Neoplasms / genetics*
  • Neoplasms / therapy
  • Polyamines / chemistry
  • Polyelectrolytes
  • Polyethylene Glycols / chemistry
  • Polyethyleneimine / chemistry
  • Receptors, Cytoplasmic and Nuclear / administration & dosage
  • Receptors, Cytoplasmic and Nuclear / genetics
  • Receptors, Cytoplasmic and Nuclear / metabolism
  • Transferrin / administration & dosage
  • Transferrin / genetics
  • Transferrin / metabolism

Substances

  • Ligands
  • Macromolecular Substances
  • Polyamines
  • Polyelectrolytes
  • Receptors, Cytoplasmic and Nuclear
  • Transferrin
  • polycations
  • Polyethylene Glycols
  • Epidermal Growth Factor
  • Polyethyleneimine
  • DNA