Ecdysteroid titers in pupae of highly social bees relate to distinct modes of caste development

J Insect Physiol. 2002 Aug;48(8):783-790. doi: 10.1016/s0022-1910(02)00103-8.

Abstract

Modifications in endocrine programs are common mechanisms that generate alternative phenotypes. In order to understand how such changes may have evolved, we analyzed the pupal ecdysteroid titers in two closely related, highly social bees: the honey bee, Apis mellifera, and a stingless bee, Melipona quadrifasciata. In both species, the ecdysteroid titers in queens reached their peak levels earlier than in workers. Titer levels at peak maxima did not differ for the honey bee castes, but in Melipona they were twofold higher in queens than in workers. During the second half of pupal development, when the ecdysteroid titers decrease and the cuticle progressively melanizes, the titer in honey bee queens remained higher than in workers, while the reverse situation was observed in Melipona. Application of the juvenile hormone analog Pyriproxyfen((R)) to spinning-stage larvae of Melipona induced queen development. Endocrinologically this was manifest in a queen-like profile of the pupal ecdysteroid titer. Comparing these data with previous results on preimaginal hormone titers in another stingless bee, we conclude that the timing and height of the pupal ecdysteroid peak may depend on the nature of the specific stimuli that initially trigger diverging queen/worker development. In contrast, the interspecific differences in the late pupal ecdysteroid titer profiles mainly seem to be related to caste-specific programs in tissue differentiation, including cuticle pigmentation.