Biodiversity, habitat area, resource growth rate and interference competition

Bull Math Biol. 2003 May;65(3):497-518. doi: 10.1016/S0092-8240(03)00008-9.

Abstract

For the majority of species, per capita growth rate correlates negatively with population density. Although the popular logistic equation for the growth of a single species incorporates this intraspecific competition, multi-trophic models often ignore self-limitation of the consumers. Instead, these models often assume that the predator-prey interactions are purely exploitative, employing simple Lotka-Volterra forms in which consumer species lack intraspecific competition terms. Here we show that intraspecific interference competition can account for the stable coexistence of many consumer species on a single resource in a homogeneous environment. In addition, our work suggests a potential mechanism for field observations demonstrating that habitat area and resource productivity strongly positively correlate to biodiversity. In the special case of a modified Lotka-Volterra model describing multiple predators competing for a single resource, we present an ordering procedure that determines the deterministic fate of each specific consumer. Moreover, we find that the growth rate of a resource species is proportional to the maximum number of consumer species that resource can support. In the limiting case, when the resource growth rate is infinite, a model with intraspecific interference reduces to the conventional Lotka-Volterra competition model where there can be an unlimited number of coexisting consumers. This highlights the crucial role that resource growth rates may play in promoting coexistence of consumer species.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biometry
  • Competitive Behavior*
  • Ecosystem*
  • Environment*
  • Growth
  • Models, Biological*
  • Population Dynamics
  • Predatory Behavior
  • Species Specificity