Face cooling by cold wind in walking subjects

Int J Biometeorol. 2003 May;47(3):148-55. doi: 10.1007/s00484-003-0159-1. Epub 2003 Mar 6.

Abstract

The effects of low to moderate wind speeds on face temperature, thermal and pain sensations while subjects walked on a treadmill during cold exposure were studied in eight healthy men. The purpose of the study was to evaluate further the risk of frostbite at different activity levels. The walking speed was 2.8 km h(-1) and two inclination levels were used, 0 degrees and 6 degrees. The subjects were exposed to -10 degrees C and 0, 1 or 5 m s(-1) wind for 60 min dressed in cold-protective clothing with only the face unprotected. Results from previous experiments with the same subjects standing for 30 min were included in the analysis of the data. Each individual was exposed to all combinations of air velocity and activity level. The exposure to -10 degrees C and the highest wind speed used would carry no risk of frostbite according to the wind chill index. Cold lowered the skin temperature of the face significantly and wind further increased skin cooling. The activity level did not affect forehead and cheek temperatures, but the average nose skin temperature was higher and pain sensations were reduced at a higher work rate. The predicted risk of frostbite in the nose, based on average responses, would thus be less at a higher work rate. However, the results indicate that exercise does not necessarily protect all individuals from frostbite at moderate air speeds, since the nose skin temperature of 25% of the subjects dropped to 0 degrees C at 5 m s(-1) during both standing and walking. Thus the potential individual risk of frostbite in the nose is similar during light exercise and standing. Moreover, the risk of frostbite seems to be underestimated by the wind chill index under the conditions tested in this study.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Cold Temperature*
  • Face*
  • Frostbite / etiology*
  • Humans
  • Male
  • Pain
  • Risk Assessment
  • Skin Temperature*
  • Walking / physiology*
  • Wind