A theoretical study of reactivity and regioselectivity in the hydroxylation of adamantane by ferrate(VI)

J Org Chem. 2003 May 16;68(10):3958-65. doi: 10.1021/jo0207168.

Abstract

The conversion of adamantane to adamantanols mediated by ferrate (FeO(4)(2)(-)), monoprotonated ferrate (HFeO(4)(-)), and diprotonated ferrate (H(2)FeO(4)) is discussed with the hybrid B3LYP density functional theory (DFT) method. Diprotonated ferrate is the best mediator for the activation of the C-H bonds of adamantane via two reaction pathways, in which 1-adamantanol is formed by the abstraction of a tertiary hydrogen atom (3 degrees ) and 2-adamantanol by the abstraction of a secondary hydrogen atom (2 degrees ). Each reaction pathway is initiated by a C-H bond cleavage via an H-atom abstraction that leads to a radical intermediate, followed by a C-O bond formation via an oxygen rebound step to lead to an adamantanol complex. The activation energies for the C-H cleavage step are 6.9 kcal/mol in the 1-adamantanol pathway and 8.4 kcal/mol in the 2-adamantanol pathway, respectively, at the B3LYP/6-311++G level of theory, whereas those of the second reaction step corresponding to the rebound step are relatively small. Thus, the rate-determining step in the two pathways is the C-H bond dissociation step, which is relevant to the regioselectivity for adamantane hydroxylation. The relative rate constant (3 degrees )/(2 degrees ) for the competing H-atom abstraction reactions is calculated to be 9.30 at 75 degrees C, which is fully consistent with an experimental value of 10.1.