Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export

J Pharmacol Exp Ther. 2003 Aug;306(2):718-25. doi: 10.1124/jpet.103.051284. Epub 2003 May 2.

Abstract

The brain sigma-1 receptors can bind neurosteroids and psychotropic drugs, including neuroleptics and cocaine and are implicated in schizophrenia, depression, and drug dependence. In this study, we found that sigma-1 receptors specifically target lipid storage sites (lipid droplets) on the endoplasmic reticulum by forming a distinct class of lipid microdomains. Both endogenously expressing sigma-1 receptors and transfected C-terminally enhanced yellow fluorescent protein (EYFP)-tagged sigma-1 receptors (Sig-1R-EYFP) target unique "ring-like" structures associated with endoplasmic reticulum reticular networks in NG108-15 cells. The ring-like structures contain neutral lipids and are enlarged by the oleate treatment, indicating that they are endoplasmic reticulum-associated lipid droplets (ER-LDs). sigma-1 receptors colocalize with caveolin-2, a cholesterol-binding protein in lipid rafts on the ER-LDs, but not with adipocyte differentiation-related protein (ADRP), a cytosolic lipid droplet (c-LD)-specific protein. When the double-arginine ER retention signal on the N terminus of sigma-1 receptors is truncated, sigma-1 receptors no longer exist on ER-LDs, but predominantly target c-LDs, which contain ADRP. sigma-1 receptors on ER-LDs form detergent-resistant raft-like lipid microdomains, the buoyancy of which is different from that of plasma membrane lipid rafts. (+)-Pentazocine causes sigma-1 receptors to disappear from the microdomains. N-Terminally EYFP-tagged sigma-1 receptors (EYFP-Sig-1R) failed to target ER-LDs. EYFP-Sig-1R-transfected cells showed an unrestricted distribution of neutral lipids all over the endoplasmic reticulum network, decreases in c-LDs and cholesterol in plasma membranes, and the bulbous aggregation of endoplasmic reticulum. Thus, sigma-1 receptors are unique endoplasmic reticulum proteins that regulate the compartmentalization of lipids on the endoplasmic reticulum and their export from the endoplasmic reticulum to plasma membrane and c-LDs.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bacterial Proteins / metabolism
  • Binding Sites
  • Endoplasmic Reticulum / metabolism*
  • Guinea Pigs
  • Hybridomas
  • Intracellular Membranes
  • Luminescent Proteins / metabolism
  • Mice
  • Protein Structure, Tertiary
  • Rats
  • Receptors, sigma / metabolism*
  • Sigma-1 Receptor
  • Tumor Cells, Cultured

Substances

  • Bacterial Proteins
  • Luminescent Proteins
  • Receptors, sigma
  • yellow fluorescent protein, Bacteria